
A Machine Learning Framework to Identify Detailed Routing
Short Violations from a Placed Netlist

Aysa Fakheri Tabrizi
University of Calgary

Calgary, Canada
afakheri@ucalgary.ca

Nima Karimpour Darav
Microsemi Corp.
Kitchener, Canada

nkarimpo@microsemi.com

Shuchang Xu
University of Calgary

Calgary, Canada
xsc14thu@foxmail.com

Logan Rakai
University of Calgary

Calgary, Canada
lmrakai@ucalgary.ca

Ismail Bustany
Xilinx Inc.

San jose, CA
ismailb@xilinx.com

Andrew Kennings
University of Waterloo

Waterloo, Canada
akennings@uwaterloo.ca

Laleh Behjat
University of Calgary

Calgary, Canada
laleh@ucalgary.ca

ABSTRACT
Detecting and preventing routing violations has become a criti-
cal issue in physical design, especially in the early stages. Lack of
correlation between global and detailed routing congestion estima-
tions and the long runtime required to frequently consult a global
router adds to the problem. In this paper, we propose a machine
learning framework to predict detailed routing short violations
from a placed netlist. Factors contributing to routing violations are
determined and a supervised neural network model is implemented
to detect these violations. Experimental results show that the pro-
posed method is able to predict on average 90% of the shorts with
only 7% false alarms and considerably reduced computational time.

CCS CONCEPTS
•Hardware→Placement;Wire routing; •Computingmethod-
ologies→ Supervised learning by classi�cation;

KEYWORDS
Design automation, physical design, routing, placement, data min-
ing, machine learning, imbalanced data

1 INTRODUCTION
Routability of a design is one of the most challenging issues in Very
Large Scale Integrated Circuits (VLSI) physical design. Detailed
routing is very complex and time consuming. Advances in tech-
nology node and increasing design rules add to this complexity.
Occurrences of violations such as shorts, pin access problems, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3195975

other detailed routing violations at the routing stage require re-
medial procedures such as rip up and reroute process and in some
cases the placement and routing stages have to be repeated. This
process can take up to several days. Therefore, detecting and pre-
venting routing violations in the early part of the physical design
�ow, preferably before the routing stage, has become critical in
reducing the design time and the possibility of failure.

Conventionally, global routers are used to estimate and evaluate
the routability of a placement solution during the placement pro-
cess. Global routers ignore the e�ects of local nets, but local nets
contribute a high percentage of the total nets and can a�ect the
quality of the routing [12, 14, 18]. There are few methods that take
into account local nets during global routing [24]. However, invok-
ing a global router several times is time consuming. In addition,
there are no models that directly predict the violations and all the
models work based on estimation of congestion. Hence, there is a
growing gap between global routers’ estimated congestion and the
actual routing violations.

In this paper, we propose a machine learning (ML) framework
to detect the short violations from a placed netlist without using a
global router. The proposed model learns from the actual detailed
routing shorts of the routed designs and predicts their occurrence
in new designs. We have determined the factors that can contribute
to the routing violations and extracted the relevant features at
the placement stage. Experimental results show that the proposed
detection method is able to predict on average 90% of the shorts on
previously unseen data with only 7% false alarms and considerably
reduce the computational time. Our main contributions include:

• Proposing a machine learning model to predict the shorts.
• De�ning and extracting e�ective features after placement.
• Predicting the short violations using the de�ned features
with an ML approach compatible with imbalanced data.

• Eliminating the need of a global router for predicting shorts.

We have validated our proposed framework on advanced de-
signs by empirical experiments, and have shown improvement on
predicting shorts violations. The rest of this paper is organized

as follows. In Section 2, background related to routing analysis
in placement, and machine learning are reviewed. The proposed
framework is presented in Section 3. The results are discussed in
Section 4. Finally, Section 5 concludes the paper.

2 PRELIMINARY
2.1 Placement and Routing
Congestion analysis is performed to identify violation prone regions
in a design before detailed routing. Global routers such as [4, 28]
are mainly used for congestion estimation. The e�ect of local nets
are not considered in global routing based estimators. Although
some modi�ed global routers consider the local nets by modeling
them, the runtime increases signi�cantly [24]. Works presented
in [16, 17, 24] estimate local net utilization by methods such as
incorporating Steiner tree wire length estimations and pin density
measurements in a global routing based congestion analysis. These
estimations are used along with a global router to estimate the
overall congestion that has a long runtime. Others use probabilistic
congestion estimation techniques [10, 25], which can be highly
inaccurate [26]. There are works that aim to detect detailed routing
violations by supervised learning [3, 13, 30]. These techniques use
the global routing results which can be time consuming and unreli-
able. The work in [19] also uses supervised learning with limited
features which can be inaccurate. In [4, 28], to assess the routabil-
ity of a design, its over�ow is calculated and a congestion plot is
generated for each global cell (gcell). A gcell with over�ow might
be routable because routing resources in neighboring gcells can be
used [24]. In addition to the over�ow, a routing congestion plot is
generated to assess the congestion in the neighbouring gcells.

2.2 Supervised Machine Learning Techniques
and Their Metrics

Supervised machine learning refers to the techniques used for de-
veloping functions from labeled data that can be used to label new
data [4]. In a supervised machine learning technique, �rst a training
set is developed and its labels are determined. The next step is to
determine the features that would represent the learned functions.
These features are essentially the most important part of a machine
learning process. Once the features are determined, the type of
the learned function is determined. Some of the most well-known
examples of the models are decision trees, support vector machines,
and neural networks (NN). A learning algorithm is then performed
on the training set and the learned functions are obtained. Finally,
the performance of the learned functions are evaluated using a sep-
arate test set. Data mining and machine learning techniques have
been applied to electronic design automation in recent years [22].
In [21, 23, 29] machine learning is used for lithography, hot-spot
detection and timing estimation.

Imbalanced data classi�cation problem is a supervised learning
problem where the proportion of the number of data in classes is
skewed. In a binary imbalanced data classi�cation problem, the
majority of data belongs to one of the classes [5, 6]. The nature
of our data is imbalanced with less than 1% of the data belonging
to the positive class. Hence, evaluating our model using the tradi-
tional metrics for classi�cation such as accuracy is insu�cient and
can be misleading. In order to evaluate our model’s performance,

the metrics of imbalance cases are used. In the following a brief
summary of these metrics are given.

Confusion Matrix: A confusion matrix is a table that presents
the performance of a classi�er and is widely used to assess imbal-
anced data. The rows of a confusion matrix present actual classes
while columns show the predictions. The schematic of a confu-
sion matrix is shown in Table 1. The confusion matrix presents the
following four cases:

• True Positive (TP /TN): The number of instances that are
correctly classi�ed as positive/negative.

• False Positive (FP /FN): The number of instances that are
negative/positive and incorrectly classi�ed as positive/negative.

Table 1: Confusion Matrix

Prediction TotalNegative Positive

Actual Negative TN FP N
Positive FN TP P

Instances

Sensitivity or True Positive Rate (TPR): Shows the ability
of the model to classify the positive class. In our problem, TPR
presents the percentage of the tiles, a rectangular area of a placed
design, with short violations that are correctly identi�ed as having
violation. Sensitivity is de�ned by: TPR = T P

P =
T P

T P+FN ⇥ 100.
Speci�city (SPC): Measures the ability of the model to classify

the negative class. In our problem, SPC presents the percentage of
normal tiles that are correctly identi�ed as not having violation.
Speci�city is de�ned by: SPC = T N

TN+F P ⇥ 100.
False Alarm (FP): Describes cases where the developed func-

tion mistakenly identi�es an event. In our problem, FP describes
the tiles with no shorts that are incorrectly identi�ed as having
shorts. It is de�ned as: FP = F P

T N+F P .
Accuracy (ACC): Shows the overall performance of the classi�er

and is de�ned by: ACC = T P+T N
All . All is the number of instances.

Matthews Correlation Coe�cient (MCC): Is a metric that is
used for binary classi�cation of imbalanced data. MCC returns a
value between -1 and +1. An MCC of +1 represents perfect predic-
tion.MCC is calculated as:MCC = T P⇥T N�F P⇥FNp

(T P+F P)(T P+FN)(T N+F P)(T N+FN)
.

3 PROPOSED METHODOLOGY
3.1 Framework Overview
We have formulated the violation detection task as a binary classi-
�cation problem with imbalanced data, where the input is a tile ti
and the output is a binary label, pi 2 {0, 1}, indicating the absence
or presence of violation. The �ow of our framework for violation
prediction and its integration in physical design �ow is presented
in Figure 1. In this �gure, the blocks represent the processes and the
clouds represent the inputs and the outputs. The solid arrows rep-
resent the common paths for training and prediction. The dashed
arrows are exclusive to the training �ow.

In training the model, �rst a design is placed by a placer. Then,
using a grid similar to global routing grid, the layout of the placed
design is divided into non-overlapping rectangular areas, tiles. The

Placer

Netlist

Placed netlist

Generating
tiles Tiles

Feature
Extraction

Router Violations

Labeling
the tiles Tile labels

Tile features Learning
model Predictions

Figure 1: The �ow of the proposed violation detection framework and its integration in physical design �ow

tiles that completely overlap the macros are excluded from the
set. The features of the tiles are extracted in the feature extraction
process. The placed netlist is given to a router to be routed and
the violations along with their locations are extracted. The tiles are
labeled using the location of the violations in the tile labeling step.
The tiles that have shorts reported by detailed router are labeled as
positive instances. All other tiles are labeled as negative instances.

The tile features and labels are fed to the learning model to train
the system. Once the model is trained, similar tiles are generated
from di�erent designs and their features are extracted. Then, the
trained model decides if there will be a violation in the tile or not.

3.2 Feature Extraction
Features can have a high impact on the performance of the ma-
chine learning algorithm. In this research, factors that signi�cantly
contribute to violations are determined through extensive experi-
mentation. These features are then formulated and included in the
feature set. The list of features that are extracted and used in this
framework is presented in the following. All the following features,
except for the �rst two, are calculated for each individual tile and
its neighborhood. The neighborhood of a tile is de�ned as the main
tile and its eight surrounding tiles. The area of a neighborhood is
nine times larger than the tile.

Relative location of the tile in the design: Tiles located in the
center of a design are prone to become congested as more global
nets crossing over the area.

Design Cell utilization: The density of a design a�ects the per-
formance of both the placer and the router. Hence, design cell
utilization is included as a global feature in the design.

Routing accessibility: This feature relates to the proportion of
the tile area covered by macros, placement blockages, and routing
blockages in di�erent metal layers (M2:M9).

Number of local nets: Number of the nets that have at least two
pins in the tile.

Number of global nets: Number of the nets that have at least one
pin in the tile and at least one pin outside the tile.

Narrow channels e�ects: This features captures the e�ects of nar-
row channels and is an estimate of the number of the nets passing
over the tile horizontally/vertically. It is computed as follows: For
each column/row of the constructed tile grid, the number of the nets
having at least one pin on both sides of the column/row is calculated
and divided by the number of the tiles in that column/row.

Pin distribution in the tile: This feature is computed as the stan-
dard deviation of the x and � locations of the pins in the tile.

Clock Network E�ect: This feature represents the e�ect of the
clock network during routing and is calculated as the number of
the clock pins in the tile.

Track availability: This feature is an estimation of number of the
maximum horizontal/vertical track using line scan algorithm [20].

Non-default Routing nets: This feature represents the e�ects of
Non-Default Routing (NDR) nets, and is equal to the number of the
pins with NDR nets.

The mentioned feature set has been selected from a set of candi-
date features. The selection was based on which feature would have
signi�cant impact on detailed routing violations. Some of these
features have direct impact on the presence of these violations,
where others do not have a direct correlation with violations but
the occurrence of a few features at the same instance can a�ect the
routability. It should also be mentioned that before inputting the
instances into the network, the features were normalized based on
the mean and standard deviation of each feature in the data set.

3.3 Learning Model
As No Free Lunch theorem [27] states, there is no one model that
works best for all the problems. Several machine learning models
were tried in order to �nd the best model. Themain selection criteria
was to use a model that could consider imbalanced data.

Models that can take into account the imbalance data or can be
adopted to do that were tested to determine their suitability for the
data set. After trying di�erent models with di�erent con�gurations,
NN was found to be the best match as the main learning model.
However, neural networks are not tailor-made for imbalance data.
Therefor, the neural network model was modi�ed by assigning
weights to the instances of minority class in the loss function. This
modi�cation enabled the network to take into account the skew
in data. Finally, a weighted neural network with one hidden layer
consisting of 20 nodes in the hidden layer was selected and tuned.

4 EXPERIMENTAL SETUP AND RESULTS
We have assessed the e�cacy of our proposed framework by apply-
ing it to the ISPD15 routability driven benchmark set designs [2].
The benchmark circuits are placed and routed by Eh?Placer [8], and
Mentor Graphics Olympus router [11], respectively. Eh?Placer is an
academic placer that achieved 2nd place in the ISPD 2015 contest

Table 2: Benchmark Circuits and their charachteristics

Design # Macros # Cells #Nets FR # IO AU AU Density
k k k SC Macro limit (%)

perf_1 0 113 113 0 0.4 91 91 91
perf_a 4 108 110 4 0.4 57 72 57
perf_b 0 113 113 12 0.4 56 50 56
dist_a 6 127 131 1 2.6 54 62 54
�t_1 0 32 33 0 3.0 84 84 84
�t_2 0 32 33 0 3.0 50 50 65
�t_a 6 31 32 0 3.0 29 74 50
�t_b 6 31 32 0 3.0 31 74 60
mm_1 0 155 159 0 4.8 80 80 80
mm_a 5 150 154 0 4.8 45 77 60
mm_b 7 146 152 3 4.8 34 73 60
b32_a 4 30 30 4 0.4 64 51 64
b32_b 6 29 29 3 0.4 27 51 27
sb11_a 1.5k 926 936 4 27.4 35 73 65
sb12 89 1,287 1,293 0 5.9 44 57 65
sb16_a 419 680 697 2 17.5 50 74 55

[7]. In this section, �rst we review the benchmark set character-
istics. Then, we present the details of the implementation of our
model. Finally, we present the prediction results and comparisons.

4.1 Implementation Details
The data set is generated from the ISPD 2015 benchmark designs
[2]. The characteristics of these benchmark circuits are given in
Table 2.

In this section the details of extracting features, generating train-
ing and test sets and setting the learning model hyperparameters
are given to enable the reader to regenerate the codes.

Determining the grid size: The size of a grid was determined
empirically. Since we have a limited number of shorts in our data
set, considering a big grid size results in absorption of multiple
shorts in one tile and having less positive instances for training. On
the other hand, the small grid size results in noise in data and the
data extracted from such a small grid are not meaningful. We tried
di�erent sizes and selected 3 rows by 3 rows as the most suitable
grid size.

Generating training and test sets: In order to train and evalu-
ate our model, the instances are divided into training set and test set.
In dividing the tiles to training and test sets, 80% of the instances of
each design, except mgc_�t_2, were randomly selected for training
and the remaining 20% of instances are assigned to the test set. De-
sign mgc_�t_2 is completely excluded from training as an example
to observe the performance of the tool on totally unseen circuits.
All the instances of this design are assigned to test set.

It should be noted that mgc_edit_dist_a and mgc_superblue16a
designs are not included in the training and test sets. they could
not be detailed routed due to high global routing congestion.

Setting learning model parameters: Our NN model is devel-
oped in Python using tensor�ow [1]. We have modeled the problem
as a binary classi�cation with one output node. One hidden layer
is considered for this model. The number of nodes in the hidden
layer is set to 20. For minimizing the loss function of NN we have
used Adam Optimizer with the learning rate 0.25 [9]. It should be

Table 3: Confusion matrix for the training and the test set

Training Prediction TotalN P

Actual N 174787 (% 94) 11979 186766
P 216 3310 (% 94) 3526

190292

Test Prediction TotalN P

Actual N 46264 (% 93) 3648 49912
P 90 829 (% 90) 919

50831

noted that gradient descent is too slow and mini-batch methods
are not good choice for this problem due to the imbalance in data.

The number of iterations is set to 3000. In order to set this param-
eter, the change in loss function is monitored in several experiments
and the number of iterations is selected. Since our data is imbal-
anced, we have assigned weights to positive instances in calculation
of loss function. The weight parameter is set to 20. That is to say
the model penalizes the miss-classi�cation of positive instances by
20 times more than negative instances.

The training is performed 25 times and the model with lowest
loss value in training is selected as our predictor.

4.2 Evaluation Results
Our proposed model is trained using the training data described in
Section 4.1. The performance of the trained model is evaluated on
both the training and test data sets and the results are summarized
in Table 3 as confusion matrices. These matrices show that the
model is able to detect 94% of the shorts with 6% false alarms in
training data, and 90% of the shorts with only 7% false alarms on
the previously unseen instances.

The performance of the proposed model on instances of all de-
signs, as well as individual designs, is presented in Table 4. In
columns 1-8, the design name, the total number of instances, the
total number of positive instances i.e. tiles with shorts, the total
number of negative instances i.e. the number of tiles without any
shorts, correctly predicted shorts, correctly predicted as normal
instances, false alarm i.e. the number of normal tiles incorrectly pre-
dicted as tiles with shorts, and the number of tiles with shorts that
are not detected are presented, respectively. The last four columns
show the TPR, SPC , ACC , andMCC metrics, respectively. The pro-
posed method is able to detect 93% of all the tiles with shorts with
only 7% false alarm rate i.e. 93% speci�city.

To be able to better describe the results, the circuits in Table 4 are
ordered based on their routability, starting from most unroutable
design. This is done by ordering the designs in the descending order
by the number of their positive instances or the number of tiles
with shorts. Then, we divided them into three groups, designs with
more than 500 shorts, designs with shorts between 100 to 500, and
designs with less than 100 shorts.

The results show that our predictor is highly successful in pre-
dicting the shorts of designs with high number of shorts with an
average of 96%. Average sensitivity for the designs with shorts

Table 4: Prediction results of proposed framework on ISPD 2015 benchmark designs

Design Instances P N T P T N FP FN T PR(%) SPC(%) ACC(%) MCC([�1 : 1])
All data 241123 4445 236678 4139 221051 15627 306 93 93 93 0.42
Shorts > 500
mgc_des_perf_a 11452 1394 10058 1348 5770 4288 46 97 57 62 0.35
mgc_�t_b 5771 853 4918 810 2373 2545 43 95 48 55 0.31
mgc_�t_a 6491 696 5795 668 2885 2910 28 96 50 55 0.28
mgc_des_perf_1 5476 617 4859 589 4147 712 28 95 85 86 0.60
Average 7298 890 6408 854 3794 2614 36 96 60 65 0.39
100 < # Shorts < 500
mgc_matrix_mult_b 21433 429 21004 349 19737 1267 80 81 94 94 0.40
mgc_pci_bridge32_a 3569 163 3406 155 2697 709 8 95 79 80 0.36
mgc_superblue12 66010 113 65897 97 65535 362 16 86 99 99 0.42
Average 30337 235 30102 200 29323 779 35 87 91 91 0.40
Shorts < 100
mgc_matrix_mult_1 8281 76 8205 52 7535 670 24 68 92 92 0.20
mgc_�t_1 1936 39 1897 37 1651 246 2 95 87 87 0.33
mgc_matrix_mult_a 16512 33 16479 5 16194 285 28 15 98 98 0.05
mgc_�t_2 3249 16 3233 16 3072 161 0 100 95 95 0.29
mgc_superblue11_a 71152 12 71140 10 71079 61 2 83 100 100 0.34
mgc_pci_bridge32_b 9791 4 9787 3 8379 1408 1 75 86 86 0.03
mgc_des_perf_b 10000 0 10000 0 9997 3 0 NA 100 100 NA
Average 18487 30 18457 21 17985 472 10 73 93 93 0.21

between 100 and 500 is 87%, and for the design with less than 100
shorts is 73%.

It is very important to obtain a good sensitivity in designs with
high number of shorts, as these are the designs that are actually
unroutable and detecting the shorts in the placement stage gives
the opportunity to plan for avoiding them. There are a few designs
with low rate of sensitivity in designs with low number of shorts.
The reason is that missing only a few shorts in such a small number
of shorts results in big decrease in the percentage. However, these
designs are considered routable and the missing shorts can be easily
�xed during the routing stage.

According to the table, the speci�cities of the designs with low
number of shorts are high. That means using this predictor as a
guide at the placement stage will not result in a large number of
changes in the designs that are already routable. There are a few
designs with lower rate. These are the design with shorts scattered
throughout the circuit and although some of the predicted tiles are
not actual shorts, but they are surrounded with actual shorts. This
is shown with an example in Figure 2. In this Figure the shorts pre-
dicted by the proposed framework for design mgc_�t_a is visually
compared to an industrial global router congestion estimation map
and actual detailed routing shorts.

In order to evaluate the e�ciency of proposed framework using
the proposed learning model, in Table 5, we compared its perfor-
mance to the performance of same framework using RUSBoost
ensemble ML method [15] and a method that uses di�erent set of
features and uses RUSBoost learning model [19].

In Table 5, �rst, we have compared the TPR (T), SPC (S), and
MCC (M) of the proposed method to those of the RUSBoost model.
It can be seen that the proposed model outperforms RUSBoost for
the majority of the designs in terms ofMCC as a single metric and
can maintain a better tradeo� between sensitivity and speci�city.

We have observed that since neural network is based on combin-
ing the features and uses all the features, it can be more accurate
in such problems where there are no dominant features and the
combination of features are the most important factor. Where as
RUSBoost is based on decision trees that do not use the features
which it does not �nd useful.

The next set of columns show the prediction results of the
method in [19]. Again, it can be observed that the proposed method
outperforms this method by comparing theMCC metric. Since the
tiling method of the two methods are di�erent, the SPC values for
designs with macros are not comparable. In calculation of the SPC
of the proposed model the area used by macros are excluded.

The total runtime spent for training in this experiment using
the proposed method is 980 seconds and the prediction time is less
than 10 seconds. Training is a one-time task, and once the model
is trained the only runtime added to the placer is a few seconds of
prediction time. This can save hours of prediction in placement by
invoking the global router several times or going back and forth
between placement and routing. The model can be updated by
adding new training data to the system and retraining the system
to achieve even better prediction.

5 CONCLUSION
In this paper, a machine learning framework to predict detailed
routing short violations from a placed netlist is presented. The
signi�cant contributions of the work are the determination of a
rich and diverse feature set, design of a learning model that is
capable of handling imbalanced data sets, and development of a
weighted neural network model which consists of 20 nodes in the
hidden layer. Experimental results show that the proposed method
is able to predict on average 90% of the shorts with only 7% false
alarms and considerably reduced computational time.

(a) Predicted shorts (b) Global router congestionmap (c) Actual detailed routing shorts

Figure 2: Visual comparison of the predicted shorts by the proposed framework with an industrial global routing based con-
gestion estimator and actual detailed routing short violations for design mgc_�t_a

Table 5: Comparison of the results of the proposed frame-
work with a di�erent learning method and [19]

Proposed RUSBoost RUSBoost
Framework less features

Design T S M T S M T S M
% % % % % % % % %

perf_1 95 85 60 100 15 14 96 53 21
perf_a 97 57 35 95 58 35 96 86 37
perf_b NA 100 NA NA 98 NA NA 71 NA
�t_1 95 87 33 90 85 28 78 78 10
�t_2 100 95 29 100 74 12 90 47 2
�t_a 96 50 28 100 15 14 77 84 11
�t_b 95 48 31 100 17 17 82 83 17
multi_1 68 92 20 50 95 19 81 50 3
multi_a 15 98 5 6 99 2 30 96 1
multi_b 81 94 40 79 88 28 78 95 17
B32_a 95 79 36 39 91 20 64 73 11
B32_b 75 86 3 25 99 7 100 85 2
SB11_a 83 100 34 50 100 34 69 81 1
SB12 86 99 42 53 100 29 55 65 1

6 ACKNOWLEDGEMENTS
This work was supported by Natural Sciences and Engineering
Council of Canada Discovery Grant program and donation by Men-
tor Graphics. Canadian Microelectronics Corporations and Com-
pute Canada provided computing support.

REFERENCES
[1] M. Abadi and et all. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. (2015). https://www.tensor�ow.org/ Software available from
tensor�ow.org.

[2] I. Bustany, D. Chinnery, J. Shinnerl, and V. Yutsi. 2015. ISPD 2015 benchmarks
with fence regions and routing blockages for detailed-routing-driven placement.
In ISPD ’15. 157–164.

[3] W. J. Chan, P. Ho, A. B. Kahng, and P. Saxena. 2017. Routability Optimization for
Industrial Designs at Sub-14Nm Process Nodes Using Machine Learning. In ISPD
’17. 15–21.

[4] Y. Chang, Y. Lee, and T. Wang. 2008. NTHU-Route 2.0: A Fast and Stable Global
Router. In ICCAD ’08. 338–343.

[5] N. Chawla, N. Japkowicz, and A. Kotcz. 2004. Editorial: Special Issue on Learning
from Imbalanced Data Sets. SIGKDD Explor. Newsl. 6, 1 (June 2004), 1–6.

[6] H. He and E. A. Garcia. 2009. Learning from Imbalanced Data. IEEE Trans. on
Knowl. and Data Eng. 21, 9 (Sept. 2009), 1263–1284.

[7] ISPD15. 2015. ISPD 2015 Blockage-Aware Detailed Routing-Driven Placement
Contest. http://www.ispd.cc/contests/15/ispd2015_contest.html. (2015). Accessed:
2018-04-04.

[8] N. Karimpour Darav, A. Kennings, A. Tabrizi, D. Westwick, and L. Behjat. 2016.
Eh?Placer: A High-Performance Modern Technology-Driven Placer. ACM TO-
DAES 21, 3 (2016), 37:1–37:27.

[9] D. P. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (2014).

[10] J. Lou, S. Krishnamoorthy, and H. S. Sheng. 2001. Estimating Routing Congestion
Using Probabilistic Analysis. In ISPD ’01. 112–117.

[11] Mentor Graphics, Inc. 2015. Olympus-SoC place and route for advanced node
designs. Technical Report. www.mentor.com/products/ic_nanometer_design/
place-route/olympus-soc.

[12] M. Pan and C. Chu. 2007. IPR: An Integrated Placement and Routing Algorithm.
In DAC ’07. 59–62.

[13] Z. Qi, Y. Cai, andQ. Zhou. 2014. Accurate prediction of detailed routing congestion
using supervised data learning. In ICCAD ’14. 97–103.

[14] J. Roy, N. Viswanathan, G. Nam, C. Alpert, and I. Markov. 2009. CRISP: Congestion
Reduction by Iterated Spreading During Placement. In ICCAD ’09. 357–362.

[15] C. Sei�ert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. 2010. RUSBoost:
A Hybrid Approach to Alleviating Class Imbalance. Trans. Sys. Man Cyber. Part
A 40, 1 (Jan. 2010), 185–197.

[16] D. Shi and A. Davoodi. 2017. TraPL: Track Planning of Local Congestion for
Global Routing. In DAC ’17. 19:1–19:6.

[17] H. Shojaei, A. Davoodi, and J. Linderoth. 2013. Planning for Local Net Congestion
in Global Routing. In ISPD ’13. 85–92.

[18] H. Shojaei, A. Davoodi, and J. T. Linderoth. 2011. Congestion Analysis for Global
Routing via Integer Programming. In ICCAD ’11. 256–262.

[19] A. Tabrizi, N. Darav, L. Rakai, A. Kennings, and L. Behjat. 2017. Detailed routing
violation prediction during placement using machine learning. In VLSI-DAT. 1–4.

[20] A. Tabrizi, N. Darav, L. Rakai, A. Kennings, W. Swartz, and L. Behjat. 2015. A
Detailed Routing-Aware Detailed Placement Technique. In ISVLSI ’15. 38–43.

[21] J. Andres Torres. 2012. ICCAD-2012 CAD Contest in Fuzzy Pattern Matching for
Physical Veri�cation and Benchmark Suite. In ICCAD ’12. 349–350.

[22] L. Wang. 2017. Experience of Data Analytics in EDA and Test - Principles,
Promises, and Challenges. Trans. Comp.-Aided Des. Integ. Cir. Sys. 36, 6 (June
2017), 885–898.

[23] L. Wang, P. Bastani, and M. Abadir. 2007. Design-silicon Timing Correlation: A
Data Mining Perspective. In DAC ’07. 384–389.

[24] Y. Wei and et. all. 2012. GLARE: Global and Local Wiring Aware Routability
Evaluation. In DAC ’12. 768–773.

[25] Jurjen Westra, Chris Bartels, and Patrick Groeneveld. 2004. Probabilistic Conges-
tion Prediction. In ISPD. 204–209.

[26] J. Westra and P. Groeneveld. 2005. Is Probabilistic Congestion Estimation Worth-
while?. In SLIP ’05. 99–106.

[27] D.Wolpert. 1996. The Lack of A Priori Distinctions Between Learning Algorithms.
Neural Computation 8, 7 (1996), 1341–1390.

[28] Y. Xu, Y. Zhang, and Ch. Chu. 2009. FastRoute 4.0: Global Router with E�cient
via Minimization. In ASPDAC ’09. 576–581.

[29] Y. Yu, G. Lin, I. Jiang, and C. Chiang. 2013. Machine-learning-based Hotspot
Detection Using Topological Classi�cation and Critical Feature Extraction. In
DAC ’13. 67:1–67:6.

[30] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou, and Y. Cai. 2015. An accurate detailed
routing routability prediction model in placement. In ASQED ’15. 119–122.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

